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Interrupted coarsening in a driven kinetically constrained Ising chain
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We introduce a driven version of the one-dimensional kinetically constrained spin [chalackle and S.
Eisinger, Zeitschr. Phys. B4, 115 (1991)]. In its original undriven version, this model shows anomalous
coarsening following a quench to a low temperature, with an equilibration time that divergesxag1/T2)
for T—0. We show that driving of constant rateinterrupts coarsening and stabilizes the chain in a state
analogous to that of a coarsening chain of age We present an analytical theory for this steady state, and
demonstrate it to be in excellent agreement with our simulation results.
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[. INTRODUCTION that steady driving interrupts coarsening and stabilizes the
chain at an apparent ag2(1/y), consistently with the sce-

Glassy systems relax very slowly at low temperaturesnario described above.
They therefore remain out of equilibrium for long times and  Ageing and driven glassy systems in general violate the
exhibit ageind 1]: the time scale for response to an externalequilibrium fluctuation dissipation theore(®DT) [18]. Re-
perturbation(or for the decay of correlatiopsncreases with  markably, however, in the ageing limit,—c~ of many
the “waiting time” t,, since the system was quenched to themean-field[19,20] and some non-mean-fie[@1-24 mod-
low temperature, and thus eventually far exceeds the experels, a nontrivial modified FDT emerges and defines a non-
mental time scale. Time translational invariance is lost. ~ equilibrium temperatureT ¢ [25]. Cugliandolo et al. [25]

As a result of this dynamical sluggishness, glassy system@roposed that an equivalent temperature should apply in the
are highly susceptible to steady external driving, even whemriven limit y—0, and thatT.4(y—0) and Tgx(t,— )
the driving ratey is small.(One example of is shear rate in  Should coincide. To date, however, the evideft26] for
a rheological systemTypically, such driving interrupts age- this is rather I|m|§ed. An added motivation for the present
ing and restores a time-translationally invari¢gsteady non- ~ Paper, therefore, is that the model defined here can be used
equilibrium state in which the time scale defined by the in-(In _future work [27)) to test this scenario further via com-
verse driving rate plays a role analogous to the waiting timdarison of its FDT predictions with those of the undriven
ty, of the ageing regimg2]. This scenario was first investi- model[28]. .
gated in the context of neural networ&4] and has subse- . The paper is structured as follows. In S_ec. Il we summa-
quently been reproduced in the diffusion of a particle in Jize the results of Ref.17] for the coarsening dynamics of

random potentid]5,6]; in driven mode-coupling equations of tst]:cuﬂ?”\\//veen Crzag‘r']tw.emth; r:_éisf;r;]edtgﬁarlloyceéldrrévmlgg r?cl)?str:g
the mean-fieldp-spin model[7]; and in a driven version of e present simuiati yt SUlts

Bouchaud’s trap modgB—10]. The results of the latter two steaQin driven.c.hain in Secs. IV and v re.spectively, demon-
studies were separately exploited to propose a general framérating that driving of rate/ halts coarsening at an effective
work for the study of “soft glassy materials[11-15 in age 1#. We summarize and give an outlook for future work
which intrinsic rheological ageing is interrupted by driving in Sec. VI.

(shear strainingand loading(shear stregd12].

In this paper, we introduce a driven version of another Il. COARSENING IN THE UNDRIVEN MODEL
glassy model: the one-dimensional Ising chain with an asym-
metric kinetic constraint. The original undriven modekro- The model consists of a chain df Ising spins s

duced by Jekle and Eisingef16]) shows anomalous slow 0,1 (1<i=<L) in a uniform field of unit magnitude, which
coarsening“ageing”) following a quench to a low tempera- is oriented such that a spin's ener§y(s;)=s;. Periodic
ture T<1, with an ergodic time that diverges as  boundary conditions apply: the left neighborssfis s, . The
~exp(constT?) for T—0, as solved exactly by Sollich and dynamics are subject to the following constraint: at any time,
Evans[17]. Particularly attractive features of the model areonly those spins whose left neighbor is up are allowed to flip.
(i) that its glassiness emerges as a direct result of the dyFor these “mobile” spins, the rate of down flips is 1 while
namical constraintwithout the need for any underlying as- the rate of up flips iss=exp(—21/T). The equilibrium distri-
sumption of quenched disordeand (ii) that it contains ex- bution is unaffected by this constraint: detailed balance is
plicit spatial interactions while being simple enough to allowobeyed and the static distribution is the trivial one prescribed
analytical progress. In what follows, our central result will be by the HamiltonianH=ZX!_,s;. In contrast, the dynamics
are rendered very slow at low temperatures, for which the
equilibrium concentration of up spirithat facilitate the dy-
*Present address: Department of Physics and Astronomy & Polynamicg ¢c=€/(1+ €) is small.
mer IRC, University of Leeds, Leeds LS2 9JT, United Kingdom. In this section we review Ref17], which solved exactly
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the relaxation of a chain prepared at a low temperafure dynamics, denotedP,(d)=P(d,7—0). Using generating
<1 via rapid quench at timg,=0 from a high initial tem-  functions it can be shown that
peratureT;=o0. At any timet,, during the relaxation, the

authors of Ref[17] described the system’s state using the -1 L eact
concept of “domains.” As shown by the vertical lines in Prra(d)= Pn(d)erZl Py(d—d")Pr(d")
U R | I 1T TR TR T T A O 1 471 < -
(in which the 0 spins are represented by’ for clarity) a ) d,E::l PAd—d")PENd )+ (2
domain is defined as an up spin, and all the down spins
separating it from the next up spin to the left. in which P2°(d) is the active part of the distributiotzero

_ Immediately after the quench, the average domain lengtfor d>2") and in whid . . . denotes a series of convolutions
d=1/c=0(1). The system then relaxes towards the low of increasing order. Equatiof2) holds only ford>2": all
temperature’s equilibrium state in whicti=0(1/€), and active domainsd<2") disappear in theth stage.
thus in which, in the limite—0, there is zero probability of ~ The weight of the distribution shifts to largerat each
finding an up spin in any finite length of chain. Hence, in thisstage of coarsening. See Fig. 2 of Réf7]. A scaling limit is
limit (e—0 at fixed chain lengththe down flipping of spins ~ @pproached for large stage numiperthe rescaled distribu-
is irreversible, and the relaxation comprises a coarseningon P,(x=d/2""1)=2""1P,(d) converges to the limit
process in which adjacent domains progressively coalesd®, (x) which obeys, fox>2, the scaling counterpart of Eq.
with one another. (2
The mechanism for this coalescence is as follows. Con-

sider, at some time after quench, a domain of lendth 1. (x\ - X et
<1/e together with its left-bounding up spin. For the pur- Epage(i = Pagdx) + jodx Pagd X—X")Pggdx")
poses of the present argument, we assume that the left-
bounding spin is “clamped” and consider how the right- 1(x
bounding up spin relaxes. Because of the constraint, before - Efo dx'P
the relaxation can occur a facilitating up spin has to be gen-
erated immediately to the left of this spin, via a propagation
of the up state rightwards from the left-bounding up spin.
The relaxation is thus impeded by an energy barrier, thd
height of which is the maximal number of spins that are ever o _ m
up withi L ; : - ; - (—D)M =T dx,

p within the (original) domain at any instant during this P X) = E H =
relaxation process. A central result of RgL7] is that for a9 m=1  m! 1721 X
domain lengths 2 1< d<2" this barrier scales as leading
to a relaxation time scal®(e™").

Hence in the limite—0 the dynamics comprise well

X=X )PIUX )+ (3)

In Ref. [17] the exact solution fo?’age(x) was shown[via
he re-summed Laplace transform of Eg)] to be

o

21 xs—x) .4

Ill. DEFINITION OF THE DRIVEN MODEL

separated stages, tm¥" of which has time scale " and In this section we incorporate non-Hamiltonian driving
results in domains of index being destroyed by coalescence into the model. As a preliminary step, though, we redefine
with their right neighbors. In logarithmic timep,,= the relaxational dynamics slightly, extending state space

—Int,/Ine=TIn(t,), the n'" stage collapses to the point such that each spis e —1,0,1 and redefining the Hamil-

vy=n. The average domain size thus exhibits stepwise tonian H=X[_,|s;|. The uniform field has thus been re-

increases at successive integer values pf as seen in Fig. placed by a potential well for each spin, with a minimum at
1 of Ref.[17]. s;=0. As before the dynamics are constrained: only those

Within this coarsening regimedé1/e), the full domain ~ SPIns for which the left neighbor has a value 1 -ed are
length distributionP(d) can be calculated using an exact aIIow.e.d to flip via the usual thermal processes in which the
independent interval treatme9], which states that no cor- transition rate fors;:1—0 and fors;: —1—0 is 1, and for
relations can build up in the length of adjacent domains proSi:0—1 ands;:0——1ise.

vided none are present in the initial state. At stagéhe So far, of course, the model can be exactly mapped onto
distribution obeyg17] the original one by a trivial relabeling=—1—s;=1 and

rescalinge— e/2. Our motivation for introducing the-1
state is to make a loose analogy with glassy rheological mod-
4.P(d,7)= 2 P(d—d’,7)[—4,P(d",7)] (1) els [10,30,31 in which a local state of high energihere
2"l <on |si|=1) can have either positive or negative local stress
(here|si|=+1, |[sj|=—1). If we define a global stress
in which the rescaled time=te" can take any positive value = (1/L)EiL: 1Si, the —1 state allows a state @hacroscopi-
7>0 in the limit e—~0. Equation(1) describes the coales- cally zero stress, which still has internal local stressesne
cence of the “active” domains of lengtt’ <2" with neigh-  positive, some negatiyeand a nonzero rate of internal dy-
boring domains of lengtld—d’. Its initial condition is the  namical rearrangements.
domain length distribution at the end of stage 1 of the We now incorporate steady driving into this three state

016103-2



INTERRUPTED COARSENING IN ADRIVEN . .. PHYSICAL REVIEW E6, 016103 (2002

version. Loosely this mimics, in a stochastic way, the stan- 07— T T ]
dard rheological experiment of applying shear strain of con- 0.6
stant ratey. To do this, we impose a flip rate of for s;: 0.5k
—1—0 andvy for s5;:0—1. This isadditional to the con- 04|
strained rates defined above drek of the kinetic constraint E’GO N
The driving ratesw for this extended model can therefore be '
summarized as follows: 0.2p
' 0.1
w(Si:O—>1)=|Si,1|e+y, 0

-1

w(s:0——1)=[si_4]e,
FIG. 1. Stresso (solid lineg and energyE (dashed linesvs
w(s:11—0)= |Si71|, sgaled Fimevwz—ln(tw)lln(e) following a quench at time,,=0,
with driving commenced also at=0; for all curvese=0.01.
The parameterv=Iny/Ine has values 0.5@), 1.0 @), 1.5
(¢), 2.0 (A), and 2.5 {V). Each curve was obtained from a
single run for a chain of length =21,

w(si:—1-0)=|s_4|+7, 5

in which periodic boundary conditions imposg=s, .

This stochastic straining clearly tends to increase the glo-malleﬂ we can make the followina observations. At earl
bal stress, as required intuitively. We note, though, that ouf. 9 ' y

tochastic rul | K for0. F five. imes,E and o have time evolutions that are independent of
stochastic rules only make sense . For negativey .
we would redefine the driven contribution to the rates as’’ and that(we have checkgdare the same as those of an

equal 10|5’| for the transitions: :1—0 and|'y| for s -0—s undriven chain. In contrast, after a crossover at ti{é/y),
" " E, ando approach steady-state values. We have checked by

—1. The model is in this sense singularjat0. repeating the simulation for the different initial conditions
described above that these steady values do not depend upon
IV. SIMULATION RESULTS FOR THE STEADILY the initial state onfor the quenched cas¢he start-up time
SHEARED MODEL ts. For the remainder of the paper, we shall be concerned
only with the ultimate steady state, and not the kinetics of its

We simulated the driven chain using a waiting time Momeformation.

Carlo_ technique (_:omb|'ned with a binary search algorithm for The steady-state stress is replotted in Fig. 2 as a function
locating the mobile spins, following Reff17]. For each run e - _
of — v (which increases withy) for various small values of

we initialized the chain either in equilibriurwith :y=0) at i C
e€<1. [In rheological parlanceg(y) is the flow curvel It

a low temperaturel = —1/log e<1, or by quenching tor . : X

from T=oc. For the quenched case, we then let the systerﬁ‘ppears to be approaching a ste.p!lke function as temperature
. . . . Is tracked towards zero, comprising plateaux separated by

r_elax according to the_undrlven ruleg<€0) until a start-up jumpwise discontinuities at integer values if

time ts, when we sety to the nonzero, constant value of = For all the steady states studied, we found the concentra-

interest. Equilibrium initialization formally corresponds to a tjgon of —1 spins to be smalfO(€)], and hence thatto

quenched chain subsequently allowed to relax ug#i>,  ithin such correctionsthe stress, the energy, and the con-

and in this case we applied the nonzerdrom the start of centration of+ 1 spins coincidéconsistently with the results

the simulation. In order to explore the hypothesis that driving

restores a steady state analogous to the state of a coarsening 0.0 - - G

. . = b
chain of age,,= 1/y, we chose values of ¥/corresponding | = e=10 :
to the waiting times studied in Refl17] for the undriven [ ... e=10
chain. Specifically, therefore, we are interested in the low | ——-e=10

temperature limit in whiche—0, y—0, at fixed values of £=0 (theory) 2
v=In(y)/In(e)=TIn(1/y) that are large compared to 1 Inc ot
(weak driving, but small enough that the system remains far ¥
from equilibrium.(To avoid possible confusion we note that 20 ;,;Z’/

v becomes large ay becomessmall since y=e€" with € s
<1. Although this is at first sight a counter intuitive way to &
characterize the shear rate, we chose this particular definition
for v as the closest possible analogy to thatvgf for the "~ 3 -2 o o 1
undriven chain. -v

In each run we monitored the stressand total energye FIG. 2. Steady-state flow curves plotted on a log scale-vs

as functions of time,, . Results for the quenched initial con- _ —Iny/In e. Simulation results for three values of exp(1T) are

dition with start-up timet;=0 are shown in Fig. 1, foe  ghown, each obtained from a single run for a spin chain of length
=0.01 and various values of. As v becomes larger{  L=2 Bold line: theoretical prediction fof —O0.
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0.60 - - - These simulation results therefore show ttwinsistently
with the phenomenology of other driven glassy mopdis-

ing interrupts coarsening and stabilizes the chain in a state
that is strikingly analogous to that of a coarsening chain of

apparent ag©(1/y).

0.40

V. THEORY

P.(d)

We now present a theory aimed at calculating the steady-
state distributionP,(d) just defined. We assume from the
outset that no correlations exist between the lengths of adja-
cent domains. We also assure@nsistently with our above
remarks that the concentration of 1 spins is negligible. We
will return to justify these assumptions in more detail at the
end of this section.

Consider, then, a chain with &d(1) population of+1
spins and a complementa@(1) population of O spins. In

FIG. 3. Domain length distribution®,(d) on the plateaw  the absence of driving, the only process affecting the chain
=n-—1/2 of the flow curves. Qpen symbols. and lines: theoreticaly,qyid be the coarsening described above, with down flipping
results forn=1 (squares 2 (diamonds, 3 (triangles. 1':6“" SYm-— of 1 spins occurring irreversiblfor fixed chain length and
EOls:,f'mu_lat'on resultf fo,rBa Tam of '?ngﬂh:z and ¢ ¢_.0), and the average domain length increasing as domains
2_”%?P (gn:—zilzl)),()a\;\:;%:(;:1(n—3%é Inset: scaled predictions ¢ length 2“1<d§2” are destroyed on a time scalée ")

n T by coalescence with their right neighbors.

In the steadily driven chain, this coarsening process is
of Fig. 1). Using the usual domain descripti¢éim which for  palanced by intradomain driven up flipping of spias0
definiteness we neglect thel spins, taking only 1 spins to 1. For the finite domain lengths to which we shall restrict
constitute the domain boundariesve have theno=1/d ourselves, this driven domain intersection occurs on a time

whered is the average domain length. scaleO(1/y)=0(e"*). For a noninteger value of such
We note the striking similarity between the dependence ofhatn—1<v<n, this time scale sits between the time-scales

Ind upon scaled waiting time,, =T Int,, in the coarsening € " * ande " for the adjacent coarsening stages1 and
chain (Fig. 1 of Ref.[17]), and the dependence of dn= n (recall Sec. I}, and separates from them in the limit

. N 0.
—Ind upon the scaled driving rate v=—TIn(1/y) in the e . .
steadilypdriven chain(Fig. 2 %f this paper 'Ighi;y)already On this driving time scale, therefore, any domain of index

gives us a strong indication that the steady state of a chaif} =n-—1 (present elther_ as a remnant qf t_he '”'“?' (_:ondl-
dri - | h ¢ ._tion, or as a result of a driven up flip-81 within an existing
nvgn at ratey is analogous to the state of a coarseningy,-in of lengthd>2""1 a distanced=<2""" from the do-
chain of aget,,=1/y. . _ . main boundarymust relax infinitely quickly. We thus expect
This hypothesis is confirmed by our simulation data forjim__ P, (d)=0 for such domain lengthsl<2""1=d,.

the full domain length distributiof®(d) on the developing Thjs defines the cutoff lengttl, observed in the simulation
plateaux of the flow curves. In particular, we find that thegata above.

distribution for the Steadily driven chain at a g|Ven is Domains labeled by]’>n_1, i_e_’ of |engthd>dc, on
closely analogous to that of a coarsening chainifgrv.  the other hand, coarsen infinitely slowly on the driving time
For a givenv (or vy), both display a discontinuity at the scale: the only dynamical processes that can affect these
samev (v,) dependent cutoff and have very similar aver-“long” domains are those initiated by driven up flip of an
ages. Both shift abruptly to larger values @fas v (v,) intradomain O spin. This up flip can occur at a distance that is
crosses successive integers, but are unchanged(as,) is  either <d, or >d, from either end, giving four separate
swept between integers. In order to maintain the closest nqases:

tational analogy with Ref[17], we denote byP(d) the (a) If the original long domain was longer thard2+ 1,
distributionP(d) in the limit of smalle for values ofv such  and if the up flip occurred at a distance of at ledst 1 from
thatn—1<v<n. Our results forP,(d) for »=0.5,1.5,2.5, both ends, we see creation of two shorter domains that are
corresponding t;m=1,2,3, are shown in Fig. 3 and are, as still both “long” in the sense that>d,,

just noted, very similar to the counterpart results of Fig. 2 of
Ref.[17] for the coarsening chain.

0.20

0.00
0

’ ) ) . . Lo oo 1
In the coarsening chain, the discontinuous shife¢d) as
v,, Crosses successive integers arose from the waiting time !
crossing the time scales for successive coarsening stages. .l:-o--o-ccoovnnns | EERRP | 1.

Likewise in the driven chain it arises from the inverse driv-
ing rate crossing these same time scal8ge the theory in  (For definiteness all the diagrams in this section assume an
Sec. V for more details. arbitrary cutoff valued,=4.)
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Considering the chain as a whole, such processes lead where the discrete Theta function is defined by
the destruction of domains of length>2d.+ 1 at a rate
O(n—m)=1 for n>m

y(d—2d,—1)P,(d) ®) —0 for n<m. ©)

and to the creation of domains of lengib-d.. at a rate (d) If the original domain was of lengtii<2d. , both the
subdomains could be shod<£d,). For this class as a whole
. (i.e., averaging over the position of the up-flipped $pihere
2y X Pud). (7)  are two subclasses of possible outcome, which by symmetry
d’'=d+dc+1 each occurs with a probability one-half. First, the freshly
flipped up spin could relax before the right-bounding spin of
(b) If the up f||p occurred within a distancdc of the the Original domain and we would see no net Change. Alter-
left-hand end of the original domain, but at a distance greatepatively, we could see
thand.+ 1 from the right-hand end we see a process such as

©

1oo... | T 1
I I 1... !
l TS NS A 1
| A IS 1P 1 |
! IS TS I 1
S I | T 1 !
Lo 1.

which does not need to be considered further since it results

in no net change. which is essentially “aided coalescence.” For the chain as a

_ (c) If the up flip occurred within a distance, of the  \\ngje processes such as these lead to destruction of do-
right-hand end of the original domain, but at a distance,5ing of lengthd at a rate

greater thard, from the left-hand end, the “short{right)
subdomain will relax immediately by coalescence with its

. . . 1 1 .
right neighbor, YPn(d) 5 (2dc—d+1)+ 5 Pn(d) y
TS Y 1. 2d
! X > Pyd)(2d,—d'+1)
d'=d.+1
N S I 1
} and creation at a rate
N | 1
2d,
leaving two “long” (d>d,) domains, with the boundary be- 2 2 (2demd'+1)Py(d)Py(d—d"). (10

i . d'=d.+1
tween them shifted to the left. Processes such as this lead to ot

the creation of domains of lengthat a rate - . .
Combining all these processes we get an evolution equation

dPn(d)= ... for the “long” domainsd>d., which we set
o0t & ” equal to zergsteady stateand solve numerically using an
y X Pyd)+y X 2 Pad)|Py(d—d") iterative procedure. The solutions for=1,2,3 for which
d'=d+1 d'=1 [d"=dc+d'+1 g  do=124, respectively are marked as open symbols in Fig. 3
(8) and give excellent agreement with the simulation results. We
) _ also used these solutions to calculate the stoesd/d. As
and to the destruction of domains of lengtfat a rate expected, this exhibits discontinuous jumps at integer values
of v as the driving time scale crosses successive coarsening
y0(d—2dy)d.P,(d)+ yO(2d.,—d+1)(d—d.— 1) time scales ant(d) shifts discontinuously to larget. It is
marked as the solid line in Fig. 2 and again agrees excel-
. 2dc ) lently with the simulation data.
X Pn(d)+yPq(d) d,_%ﬂ (d"=dc—1) As d.—, a scaling limitd_P(d)=PB(x=d/d,) is ap-
e proached. See the inset of Fig. 3 and Fig. 4. Taking the limit
* d.— at fixedx=d/d, in the steady-state equation just de-
XP,(d")+d, Z Pn(d’)l, rived, we find that this scaling state must obey the equation
d'=2d.+1
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1 T T T T T T T T T T T T T

\ —g(x)PD(x)=gM(x)P(x)+P(x)+ P(1+x)
A
0.8r \\\ 7 2 ’ "p(1) ’
I A\ — | dX' f(x" )P (x—=x"). (12
0
0.6¢ . .
) \ . ]
’504_ N | On the right-hand sidéRHS) of this expressiong™®(x) is
‘ \ discontinuous ak=2 (as noted abovye while the integral
] over the infinite discontinuity(x—x’" — 1) of the differential
021 . i PM(x—x") in the last term’s integrand give® (3—x)f(x
. L .\\.“‘rm- | —1), which is discontinuous at=2. All other terms on the
%05 T 15 2 25 3 35 4 RHS are continuous for ak>1. HenceP)(x) has a finite

discontinuity atx=2. By performing successive differentia-
FIG. 4. Scaling distributionP(x) for the driven chain(solid Ec()gs, we Can.e'xten.d th's_ ar'gument to arbitrarily high
line) andP,{x) for the coarsening chaifdashed ling Inset: de- P™(x) has a finite discontinuity at=k+1 for all k=0.

rivative d P/dx for the driven distribution, showing a slight discon- Our central result can therefore be_ summgrlzed as fol-

tinuity (too small to be discernible in the undifferentiated data of theIOWS' We have shown that a Stead'.ly driven chain approaches

main figurg atx=2. a scaling state in the limit of smalf. We have shown that
this scaling state is strikingly analogous to the counterpart

w0 1 scaling state of a coarsening chain of dge=1/y. In par-
0= —g(x)|5(x)+2J' dx’|~3(x’)—J dx'P(x") ticular, both states have a unit Heaviside discontinuity at
X X =1, and(more generallya finite discontinuity inP®(x) at
2 - x=k+1.
+ JO dx"f(x")P(x—=x"). (11 Despite the striking qualitative similarities in the distribu-

tions P(x) and |3aggx), there are obvious quantitative dis-

crepancies. This is not inconsistent with the phenomenology
We note for use below that the functié(x) (thus defineglis ~ Of other glassy models: the ageing state of Bouchaud's trap
discontinuous ax=1, and the first derivativg(®)(x) of gis  model[8], for example, is analogous but not identical to its
likewise discontinuous at=2. In principle, Eq.(11) con- steadily_driven cognterpa[tLO]._lt is none_theless inst_ructive
tains all the information needed to calcul&eanalytically. to consider the origin of the discrepancies. An obvious can-

For th @ in th dri hain. th didate is our introduction in the driven model of thel spin
or the counterpart sta agdX) in the undriven chain, the state. However, in steady state the population of such spins is
closed expressiofEq. (4)] was found[17] as the self-

. : . . . small. Indeed, we have checked that domain distributions
consistent solution of a simple algebraic relation between thBroduced by driven simulations without thel state agree
Laplace transformss and H of Pgdx) and PoodX)@(2  with those that include the- 1 state to withinO(e).

—X) respectively. The corresponding transform of Ebfl) The discrepancies must therefore be of dynamical origin.
for the driven case is a ComphcatEd differential relation be-During Coarsening’ the On|y process is domain coalescence.

tweenG, H, G, andH"), and we have been unable find a Therefore, information can only propagate up the distribu-
self-consistent analytic solution. However our numerical "ion (to largerd). In this way the scaling limif®,.(x) is
. ag

sults(see Fig. 4 demonstrate tha(x) is (as expectevery  completely determined b(x') for x' <x, as seen in Eq.
similar to its undriven counterpaRy4{x): both have a unit  (3). In contrast, in the driven chaiR(x) is connected to all
Heaviside discontinuity at=1 and show similar decay for x’_. o, since driven domain intersection acts on domains of
x>1. Although the discontinuity in the first derivative gaj| lengths; see Eq11). Furthermore, in the ageing chain the
IND%)Q(X) at x=2 (strongly apparent in the dashed curve of domain lengths set the dynamical rates only via the coarsen-
Fig. 4) is less noticeable in the solid curve for the drivening time scalese™". In contrast, the driving dynamics are
stateP, it is revealed by numerical differentiation in the inset further sensitive to domain length through the additional fea-
of Fig. 4. ture that a longer domain is more likely to be intersected.

It was shown in Ref[17] that the ageing scaling distribu- The most apparent difference betwerégng) and P(x)
tion P, has a finite discontinuity in itkth derivative atx  is the much smaller discontinuity iR™)(x) at x=2. This
=k+1 for all integerk=0. We have already seen numeri- can be explained as follows. The discontinuity R4")(x)
cally that the driven Scaling distribution shares the discontiqgrises from an interp|ay between the discontinuitgqh)(x)
nuities fork=0,1. We shall now outline an analytical argu- at x=2 and inf(x) at x=1 [recall Eq.(12)]. Physically,
ment that can be used to show that in fact the driverg(x) is the rate at which domains of Sca”ng |eng¢[‘are
distribution sharesall of these discontinuities. We confine destroyed. This is discontinuous because driven intersection
ourselves t&k=1 since our analysis has already captured thesf a domain of scaled lengtk<2 can produce two active
discontinuity in P itself at x=1. Differentiating Eq.(11) domains(scaling length<1), whereas only one can be ac-
once we get tive for x>2. Similarly, the discontinuous part ¢{x’) re-
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sults from the production of domains of lengthvia aided VI. SUMMARY AND OUTLOOK

C<O; .Iesﬁzgzé[?\;/%cees;egtsat;?gagr Iggrﬁggrgglgnto ?gg;t{g;; We have i_ncorporeted driving dynamics into the kineti-
magnitude but opposite sign resulting in only a small disconSally_constrained spin chain of Ref16], and presented
tinity in PO(x). In contrast, the discontinuity iPL(x) S|mulat|9n results showing that the coarsening dynamics of
. e ’ o . ag the undriven chairias solved in Ref17]) are interrupted by
arises from a single process, the origin of which can be see eady driving. Consistent with the broader glassy literature
from Eq. (3). The second term on the RHS describes the[2_7 9,190 we have found that steady driving stabilizes the
production of domains of lengtk via coalescence of an ac- hai = by th y gd L . Wi
tive domain of lengthx’ with a right neighbor of lengthx chain at an apparent age set_ y the inverse driving ra e. Ve
—x’. However if x—x’ is itself active, the right neighbor have presented a theory for th|s steady _state,_demonstratlng it
can relax before the’ domain, resulting in a domain of to be in excellent agreement with our simulation results. We
length>x. The rate of producing domains of lengtlis thus ~ have shown that a scaling state is approached at gmalid
reduced, as encoded in third term on the RHS. The cutoff ithat this scaling state has very similar properties to its coun-
the active distribution ak=2 means that the derivative of terpart scaling state reached at long times in the coarsening
this term is discontinuous at=4. When transferred to the chain.
next coarsening stagencoded in the left-hand side of the ~ We now outlook some possible directions for future work.

equatior, this discontinuity appears iﬁg&(Z). Thehigher ~ Above, we chused on a chain that is steadily driven at a
convolutions not shown in E@3) are smooth enough not to constant ratey. We also noted the loose analogy of this
affect this argument. driving scenario to that of constant shear rate in a rheological
We finally return to justify our two assumptions: first, that system. In the spirit of this rheological connection, we can
the population of-1 spins is negligible in the steady state. jdentify possible analogues of two other standard rheological
As noted above, we have already numerica”y observed thiﬁgsts_step strain and Step stress—which it would be inter-
population to beO(e) (smal); we are now in a position to  esting to investigate further. For a step strain of sjzewve
show this theoretically, as follows. Over a time scalé/y, promote, at the time,, of strain application, a fractioty, of
the only mechanism in which-1 spins can be created in- —1 spins(chosen randomlyaccording tos;: —1—0 and of
volves propagation of the facilitating state-{ or 1), via 0 spins(again chosen randomls :0—1. We do thiswith-
constrained thermal activation, to within a distamiced; to  out regard to the kinetic constrainFor all other times the
the right of one of the existing facilitating spins. Denoting by system merely relaxes under its undriven constrained dynam-
7¢(d) the time scale on which domains of lenglftoarsen, jcs (Note that the step f, is just the “impulsive limit” of
the time scale upon which-a1l spin is created at a distance

d from an existing facilitator is.(d)/e. Once created, such a the above steady shear Cag?&jtz Yo, With dt—0 andy
spin will relax back to the O state on a time scalg¢d). _m'_) Fer a step stress of sizg, we apply th_e same dy-
Hence in the steady state, the population-cf states must namics just defined for the step strain up until the titj)e
be O(€), which is indeed small in the limit considered here. (We can merely rename, by o, because the “spring con-
Our second assumption was that of “independent intersStant”k=1.) Fort>t,, we implement the “constant” strain-
vals.” This was used in Ref17] for the coarsening process rate dynamics defined above, but withcontinuously ad-
of the undriven chain, and in that case is provably exact. Wgusted to ensure that, remains(on averagga constant.
have not been able to prove its strict validity for this As noted in the introduction, it would also be interesting

driven case. However, our simulation results show thato study FDT in the driven steady sta& constanty) to see
the relevant correlation functio€=2{_,(d;—(d))(d;1 if any effective temperature emerges, gifdso) whether it
—(d})/E}‘:O(dj—<d>)2 (in which d; is the length ofith do-  coincides with any effective FDT temperature of a coarsen-
main from the left-hand end of the chain, ands the total  jng chain of age,,= 1/y. This is the subject of a forthcoming
number of domainsis not greater than I in any of the ublication[27].
steady states considered; the assumption, therefore, is likely

to be reasonable. Note that our numerical observation of a

nonzero correlation function could still be consistent with the

independent interval approximation being exact in the limit

e—0 at fixed v. Indeed, we have observed that, ass The author thanks M. E. Cates, M. R. Evans, P. D. Olm-
tracked downwards, the numerical value of the correlatiorsted, and P. Sollich for helpful discussions, and EPSRC for
function gets smaller. financial support.
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