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Interrupted coarsening in a driven kinetically constrained Ising chain
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We introduce a driven version of the one-dimensional kinetically constrained spin chain@J. Jackle and S.
Eisinger, Zeitschr. Phys. B84, 115 ~1991!#. In its original undriven version, this model shows anomalous
coarsening following a quench to a low temperature, with an equilibration time that diverges as;exp(1/T2)

for T→0. We show that driving of constant rateġ interrupts coarsening and stabilizes the chain in a state

analogous to that of a coarsening chain of age 1/ġ. We present an analytical theory for this steady state, and
demonstrate it to be in excellent agreement with our simulation results.

DOI: 10.1103/PhysRevE.66.016103 PACS number~s!: 05.50.1q, 05.40.2a, 05.70.Ln, 64.70.Pf
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I. INTRODUCTION

Glassy systems relax very slowly at low temperatur
They therefore remain out of equilibrium for long times a
exhibit ageing@1#: the time scale for response to an extern
perturbation~or for the decay of correlations! increases with
the ‘‘waiting time’’ tw since the system was quenched to t
low temperature, and thus eventually far exceeds the exp
mental time scale. Time translational invariance is lost.

As a result of this dynamical sluggishness, glassy syst
are highly susceptible to steady external driving, even w

the driving rateġ is small.~One example ofġ is shear rate in
a rheological system.! Typically, such driving interrupts age
ing and restores a time-translationally invariant~steady! non-
equilibrium state in which the time scale defined by the
verse driving rate plays a role analogous to the waiting ti
tw of the ageing regime@2#. This scenario was first investi
gated in the context of neural networks@3,4# and has subse
quently been reproduced in the diffusion of a particle in
random potential@5,6#; in driven mode-coupling equations o
the mean-fieldp-spin model@7#; and in a driven version o
Bouchaud’s trap model@8–10#. The results of the latter two
studies were separately exploited to propose a general fra
work for the study of ‘‘soft glassy materials’’@11–15# in
which intrinsic rheological ageing is interrupted by drivin
~shear straining! and loading~shear stress! @12#.

In this paper, we introduce a driven version of anoth
glassy model: the one-dimensional Ising chain with an as
metric kinetic constraint. The original undriven model~intro-
duced by Ja¨ckle and Eisinger@16#! shows anomalous slow
coarsening~‘‘ageing’’ ! following a quench to a low tempera
ture T!1, with an ergodic time that diverges ast
;exp(const/T2) for T→0, as solved exactly by Sollich an
Evans@17#. Particularly attractive features of the model a
~i! that its glassiness emerges as a direct result of the
namical constraint~without the need for any underlying as
sumption of quenched disorder! and ~ii ! that it contains ex-
plicit spatial interactions while being simple enough to allo
analytical progress. In what follows, our central result will
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that steady driving interrupts coarsening and stabilizes
chain at an apparent ageO(1/ġ), consistently with the sce
nario described above.

Ageing and driven glassy systems in general violate
equilibrium fluctuation dissipation theorem~FDT! @18#. Re-
markably, however, in the ageing limittw→` of many
mean-field@19,20# and some non-mean-field@21–24# mod-
els, a nontrivial modified FDT emerges and defines a n
equilibrium temperatureTeff @25#. Cugliandolo et al. @25#
proposed that an equivalent temperature should apply in
driven limit ġ→0, and thatTeff(ġ→0) and Teff(tw→`)
should coincide. To date, however, the evidence@7,26# for
this is rather limited. An added motivation for the prese
paper, therefore, is that the model defined here can be
~in future work @27#! to test this scenario further via com
parison of its FDT predictions with those of the undrive
model @28#.

The paper is structured as follows. In Sec. II we summ
rize the results of Ref.@17# for the coarsening dynamics o
the undriven chain. We then define the novel driving rules
Sec. III. We present simulation and analytical results for
steadily driven chain in Secs. IV and V respectively, demo
strating that driving of rateġ halts coarsening at an effectiv
age 1/ġ. We summarize and give an outlook for future wo
in Sec. VI.

II. COARSENING IN THE UNDRIVEN MODEL

The model consists of a chain ofL Ising spins si
P0,1 (1, i<L) in a uniform field of unit magnitude, which
is oriented such that a spin’s energyEi(si)5si . Periodic
boundary conditions apply: the left neighbor ofs1 is sL . The
dynamics are subject to the following constraint: at any tim
only those spins whose left neighbor is up are allowed to fl
For these ‘‘mobile’’ spins, the rate of down flips is 1 whil
the rate of up flips ise5exp(21/T). Theequilibrium distri-
bution is unaffected by this constraint: detailed balance
obeyed and the static distribution is the trivial one prescrib
by the HamiltonianH5( i 51

L si . In contrast, the dynamics
are rendered very slow at low temperatures, for which
equilibrium concentration of up spins~that facilitate the dy-
namics! c5e/(11e) is small.

In this section we review Ref.@17#, which solved exactly
y-
©2002 The American Physical Society03-1
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the relaxation of a chain prepared at a low temperaturT
!1 via rapid quench at timetw50 from a high initial tem-
peratureTi5`. At any time tw during the relaxation, the
authors of Ref.@17# described the system’s state using t
concept of ‘‘domains.’’ As shown by the vertical lines in

~in which the 0 spins are represented by ‘‘• ’’ for clarity ! a
domain is defined as an up spin, and all the down sp
separating it from the next up spin to the left.

Immediately after the quench, the average domain len
d̄[1/c5O(1). The system then relaxes towards the lo
temperature’s equilibrium state in whichd̄5O(1/e), and
thus in which, in the limite→0, there is zero probability o
finding an up spin in any finite length of chain. Hence, in th
limit ( e→0 at fixed chain length! the down flipping of spins
is irreversible, and the relaxation comprises a coarsen
process in which adjacent domains progressively coale
with one another.

The mechanism for this coalescence is as follows. C
sider, at some time after quench, a domain of lengthd
!1/e together with its left-bounding up spin. For the pu
poses of the present argument, we assume that the
bounding spin is ‘‘clamped’’ and consider how the righ
bounding up spin relaxes. Because of the constraint, be
the relaxation can occur a facilitating up spin has to be g
erated immediately to the left of this spin, via a propagat
of the up state rightwards from the left-bounding up sp
The relaxation is thus impeded by an energy barrier,
height of which is the maximal number of spins that are e
up within the ~original! domain at any instant during thi
relaxation process. A central result of Ref.@17# is that for
domain lengths 2n21,d<2n this barrier scales asn, leading
to a relaxation time scaleO(e2n).

Hence in the limit e→0 the dynamics comprise we
separated stages, thenth of which has time scalee2n and
results in domains of indexn being destroyed by coalescen
with their right neighbors. In logarithmic time,nw5
2 ln tw /ln e5T ln(tw), the nth stage collapses to the poin
nw5n. The average domain sized̄ thus exhibits stepwise
increases at successive integer values ofn w , as seen in Fig.
1 of Ref. @17#.

Within this coarsening regime (d̄!1/e), the full domain
length distributionP(d) can be calculated using an exa
independent interval treatment@29#, which states that no cor
relations can build up in the length of adjacent domains p
vided none are present in the initial state. At stagen the
distribution obeys@17#

]tP~d,t!5 (
2n21,d8<2n

P~d2d8,t!@2]tP~d8,t!# ~1!

in which the rescaled timet5ten can take any positive valu
t.0 in the limit e→0. Equation~1! describes the coales
cence of the ‘‘active’’ domains of lengthd8<2n with neigh-
boring domains of lengthd2d8. Its initial condition is the
domain length distribution at the end of stagen21 of the
01610
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dynamics, denotedPn(d)5P(d,t→0). Using generating
functions it can be shown that

Pn11~d!5Pn~d!1 (
d851

d21

Pn~d2d8!Pn
act~d8!

2
1

2 (
d851

d21

Pn
act~d2d8!Pn

act~d8!1••• ~2!

in which Pn
act(d) is the active part of the distribution~zero

for d.2n) and in which . . . denotes a series of convolution
of increasing order. Equation~2! holds only ford.2n: all
active domains (d<2n) disappear in thenth stage.

The weight of the distribution shifts to largerd at each
stage of coarsening. See Fig. 2 of Ref.@17#. A scaling limit is
approached for large stage numbern: the rescaled distribu-
tion P̃n(x5d/2n21)52n21Pn(d) converges to the limit
P̃age(x) which obeys, forx.2, the scaling counterpart of Eq
~2!,

1

2
P̃ageS x

2D5 P̃age~x!1E
0

x

dx8P̃age~x2x8!P̃age
act~x8!

2
1

2E0

x

dx8P̃age
act~x2x8!P̃age

act~x8!1•••. ~3!

In Ref. @17# the exact solution forP̃age(x) was shown@via
the re-summed Laplace transform of Eq.~3!# to be

P̃age~x!5 (
m51

`
~21!m21

m! E
1

`

)
r 51

m
dxr

xr
dS (

s51

m

xs2xD . ~4!

III. DEFINITION OF THE DRIVEN MODEL

In this section we incorporate non-Hamiltonian drivin
into the model. As a preliminary step, though, we redefi
the relaxational dynamics slightly, extending state spa
such that each spinsiP21,0,1 and redefining the Hamil
tonian H5( i 51

L usi u. The uniform field has thus been re
placed by a potential well for each spin, with a minimum
si50. As before the dynamics are constrained: only tho
spins for which the left neighbor has a value 1 or21 are
allowed to flip via the usual thermal processes in which
transition rate forsi :1→0 and forsi :21→0 is 1, and for
si :0→1 andsi :0→21 is e.

So far, of course, the model can be exactly mapped o
the original one by a trivial relabelingsi521→si51 and
rescalinge→e/2. Our motivation for introducing the21
state is to make a loose analogy with glassy rheological m
els @10,30,31# in which a local state of high energy~here
usi u51) can have either positive or negative local stre
~here usi u511, usi u521). If we define a global stresss
5(1/L)( i 51

L si , the 21 state allows a state ofmacroscopi-
cally zero stress, which still has internal local stresses~some
positive, some negative! and a nonzero rate of internal dy
namical rearrangements.

We now incorporate steady driving into this three sta
3-2
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INTERRUPTED COARSENING IN A DRIVEN . . . PHYSICAL REVIEW E66, 016103 ~2002!
version. Loosely this mimics, in a stochastic way, the st
dard rheological experiment of applying shear strain of c
stant rateġ. To do this, we impose a flip rate ofġ for si :
21→0 and ġ for si :0→1. This is additional to the con-
strained rates defined above andfree of the kinetic constraint.
The driving ratesv for this extended model can therefore
summarized as follows:

v~si :0→1!5usi 21ue1ġ,

v~si :0→21!5usi 21ue,

v~si :1→0!5usi 21u,

v~si :21→0!5usi 21u1ġ, ~5!

in which periodic boundary conditions imposes05sL .
This stochastic straining clearly tends to increase the

bal stress, as required intuitively. We note, though, that
stochastic rules only make sense forġ>0. For negativeġ
we would redefine the driven contribution to the rates
equal touġu for the transitionsi :1→0 and uġu for si :0→
21. The model is in this sense singular atġ50.

IV. SIMULATION RESULTS FOR THE STEADILY
SHEARED MODEL

We simulated the driven chain using a waiting time Mon
Carlo technique combined with a binary search algorithm
locating the mobile spins, following Ref.@17#. For each run
we initialized the chain either in equilibrium~with ġ50) at
a low temperatureT521/log e!1, or by quenching toT
from T5`. For the quenched case, we then let the sys
relax according to the undriven rules (ġ50) until a start-up
time ts, when we setġ to the nonzero, constant value o
interest. Equilibrium initialization formally corresponds to
quenched chain subsequently allowed to relax untilts5`,
and in this case we applied the nonzeroġ from the start of
the simulation. In order to explore the hypothesis that driv
restores a steady state analogous to the state of a coars
chain of agetw51/ġ, we chose values of 1/ġ corresponding
to the waiting times studied in Ref.@17# for the undriven
chain. Specifically, therefore, we are interested in the l
temperature limit in whiche→0, ġ→0, at fixed values of
n5 ln(ġ)/ ln(e)5T ln(1/ġ) that are large compared to
~weak driving!, but small enough that the system remains
from equilibrium.~To avoid possible confusion we note th
n becomes large asġ becomessmall, since ġ5en with e
!1. Although this is at first sight a counter intuitive way
characterize the shear rate, we chose this particular defin
for n as the closest possible analogy to that ofnw for the
undriven chain.!

In each run we monitored the stresss and total energyE
as functions of timetw . Results for the quenched initial con
dition with start-up timets50 are shown in Fig. 1, fore
50.01 and various values ofn. As n becomes larger (ġ
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smaller! we can make the following observations. At ear
times,E ands have time evolutions that are independent
ġ, and that~we have checked! are the same as those of a
undriven chain. In contrast, after a crossover at timeO(1/ġ),
E, ands approach steady-state values. We have checked
repeating the simulation for the different initial condition
described above that these steady values do not depend
the initial state or~for the quenched case! the start-up time
ts. For the remainder of the paper, we shall be concer
only with the ultimate steady state, and not the kinetics of
formation.

The steady-state stress is replotted in Fig. 2 as a func
of 2n ~which increases withġ) for various small values of
e!1. @In rheological parlance,s(ġ) is the flow curve.# It
appears to be approaching a steplike function as tempera
is tracked towards zero, comprising plateaux separated
jumpwise discontinuities at integer values ofn.

For all the steady states studied, we found the concen
tion of 21 spins to be small@O(e)#, and hence that~to
within such corrections! the stress, the energy, and the co
centration of11 spins coincide~consistently with the results

FIG. 1. Stresss ~solid lines! and energyE ~dashed lines! vs
scaled timenw52 ln(tw)/ln(e) following a quench at timetw50,
with driving commenced also atts50; for all curves e50.01.

The parametern[ lnġ/ lne has values 0.5 (s), 1.0 (h), 1.5
(L), 2.0 (n), and 2.5 (,). Each curve was obtained from
single run for a chain of lengthL5216.

FIG. 2. Steady-state flow curves plotted on a log scale vs2n

52 lnġ/ ln e. Simulation results for three values ofe5exp(1/T) are
shown, each obtained from a single run for a spin chain of len
L5216. Bold line: theoretical prediction forT→0.
3-3
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SUZANNE M. FIELDING PHYSICAL REVIEW E66, 016103 ~2002!
of Fig. 1!. Using the usual domain description~in which for
definiteness we neglect the21 spins, taking only 1 spins to
constitute the domain boundaries!, we have thens51/d̄
whered̄ is the average domain length.

We note the striking similarity between the dependence
ln d̄ upon scaled waiting timenw5T ln tw in the coarsening
chain ~Fig. 1 of Ref. @17#!, and the dependence of lns5

2 ln d̄ upon the scaled driving rate2n52T ln(1/ġ) in the
steadily driven chain~Fig. 2 of this paper!. This already
gives us a strong indication that the steady state of a c
driven at rateġ is analogous to the state of a coarsen
chain of agetw51/ġ.

This hypothesis is confirmed by our simulation data
the full domain length distributionP(d) on the developing
plateaux of the flow curves. In particular, we find that t
distribution for the steadily driven chain at a givenn is
closely analogous to that of a coarsening chain fornw5n.
For a givenn ~or nw), both display a discontinuity at th
samen (nw) dependent cutoff and have very similar ave
ages. Both shift abruptly to larger values ofd as n (nw)
crosses successive integers, but are unchanged asn (n w) is
swept between integers. In order to maintain the closest
tational analogy with Ref.@17#, we denote byPn(d) the
distributionP(d) in the limit of smalle for values ofn such
that n21,n,n. Our results forPn(d) for n50.5,1.5,2.5,
corresponding ton51,2,3, are shown in Fig. 3 and are,
just noted, very similar to the counterpart results of Fig. 2
Ref. @17# for the coarsening chain.

In the coarsening chain, the discontinuous shift ofP(d) as
nw crosses successive integers arose from the waiting
crossing the time scales for successive coarsening sta
Likewise in the driven chain it arises from the inverse dr
ing rate crossing these same time scales.~See the theory in
Sec. V for more details.!

FIG. 3. Domain length distributionsPn(d) on the plateaun
5n21/2 of the flow curves. Open symbols and lines: theoreti
results forn51 ~squares!, 2 ~diamonds!, 3 ~triangles!. Full sym-
bols: simulation results for a chain of lengthL5216 and e
51024 (n51,2), ande51023 (n53). Inset: scaled prediction
2n21Pn(d52n21x) vs x for n51, . . .,16.
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These simulation results therefore show that~consistently
with the phenomenology of other driven glassy models! driv-
ing interrupts coarsening and stabilizes the chain in a s
that is strikingly analogous to that of a coarsening chain
apparent ageO(1/ġ).

V. THEORY

We now present a theory aimed at calculating the stea
state distributionPn(d) just defined. We assume from th
outset that no correlations exist between the lengths of a
cent domains. We also assume~consistently with our above
remarks! that the concentration of21 spins is negligible. We
will return to justify these assumptions in more detail at t
end of this section.

Consider, then, a chain with anO(1) population of11
spins and a complementaryO(1) population of 0 spins. In
the absence of driving, the only process affecting the ch
would be the coarsening described above, with down flipp
of 1 spins occurring irreversibly~for fixed chain length and
e→0), and the average domain length increasing as dom
of length 2n21,d<2n are destroyed on a time scaleO(e2n)
by coalescence with their right neighbors.

In the steadily driven chain, this coarsening process
balanced by intradomain driven up flipping of spinssi :0
→1. For the finite domain lengths to which we shall restr
ourselves, this driven domain intersection occurs on a t
scaleO(1/ġ)[O(e2n). For a noninteger value ofn such
thatn21,n,n, this time scale sits between the time-sca
e2(n21) ande2n for the adjacent coarsening stagesn21 and
n ~recall Sec. II!, and separates from them in the limite
→0.

On this driving time scale, therefore, any domain of ind
n8<n21 ~present either as a remnant of the initial con
tion, or as a result of a driven up flip 0→1 within an existing
domain of lengthd.2n21 a distanced<2n21 from the do-
main boundary! must relax infinitely quickly. We thus expec
lime→0Pn(d)50 for such domain lengthsd<2n21[dc .
This defines the cutoff lengthdc observed in the simulation
data above.

Domains labeled byn8.n21, i.e., of lengthd.dc , on
the other hand, coarsen infinitely slowly on the driving tim
scale: the only dynamical processes that can affect th
‘‘long’’ domains are those initiated by driven up flip of a
intradomain 0 spin. This up flip can occur at a distance tha
either <dc or .dc from either end, giving four separat
cases:

~a! If the original long domain was longer than 2dc11,
and if the up flip occurred at a distance of at leastdc11 from
both ends, we see creation of two shorter domains that
still both ‘‘long’’ in the sense thatd.dc ,

~For definiteness all the diagrams in this section assume
arbitrary cutoff valuedc54.!

l

3-4
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INTERRUPTED COARSENING IN A DRIVEN . . . PHYSICAL REVIEW E66, 016103 ~2002!
Considering the chain as a whole, such processes lea
the destruction of domains of lengthd.2dc11 at a rate

ġ~d22dc21!Pn~d! ~6!

and to the creation of domains of lengthd.dc at a rate

2ġ (
d85d1dc11

`

Pn~d8!. ~7!

~b! If the up flip occurred within a distancedc of the
left-hand end of the original domain, but at a distance grea
thandc11 from the right-hand end we see a process such

which does not need to be considered further since it resu
in no net change.

~c! If the up flip occurred within a distancedc of the
right-hand end of the original domain, but at a distanc
greater thandc from the left-hand end, the ‘‘short’’~right!
subdomain will relax immediately by coalescence with i
right neighbor,

leaving two ‘‘long’’ (d.dc) domains, with the boundary be-
tween them shifted to the left. Processes such as this lea
the creation of domains of lengthd at a rate

ġ (
d85d11

d1dc

Pn~d8!1ġ (
d851

dc F (
d95dc1d811

`

Pn~d9!GPn~d2d8!

~8!

and to the destruction of domains of lengthd at a rate

ġQ~d22dc!dcPn~d!1ġQ~2dc2d11!~d2dc21!

3Pn~d!1ġPn~d!F (
d85dc11

2dc

~d82dc21!

3Pn~d8!1dc (
d852dc11

`

Pn~d8!G ,
01610
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where the discrete Theta function is defined by

Q~n2m!51 for n.m

50 for n<m. ~9!

~d! If the original domain was of lengthd<2dc , both the
subdomains could be short (d<dc). For this class as a whole
~i.e., averaging over the position of the up-flipped spin! there
are two subclasses of possible outcome, which by symm
each occurs with a probability one-half. First, the fresh
flipped up spin could relax before the right-bounding spin
the original domain and we would see no net change. Al
natively, we could see

which is essentially ‘‘aided coalescence.’’ For the chain a
whole, processes such as these lead to destruction of
mains of lengthd at a rate

ġPn~d!
1

2
~2dc2d11!1

1

2
Pn~d!ġ

3 (
d85dc11

2dc

Pn~d8!~2dc2d811!

and creation at a rate

ġ

2 (
d85dc11

2dc

~2dc2d811!Pn~d8!Pn~d2d8!. ~10!

Combining all these processes we get an evolution equa
] tPn(d)5 . . . for the ‘‘long’’ domainsd.dc , which we set
equal to zero~steady state! and solve numerically using an
iterative procedure. The solutions forn51,2,3 for which
dc51,2,4, respectively are marked as open symbols in Fig
and give excellent agreement with the simulation results.
also used these solutions to calculate the stresss51/d̄. As
expected, this exhibits discontinuous jumps at integer val
of n as the driving time scale crosses successive coarse
time scales andP(d) shifts discontinuously to largerd. It is
marked as the solid line in Fig. 2 and again agrees ex
lently with the simulation data.

As dc→`, a scaling limit dcP(d)5 P̃(x5d/dc) is ap-
proached. See the inset of Fig. 3 and Fig. 4. Taking the li
dc→` at fixedx5d/dc in the steady-state equation just d
rived, we find that this scaling state must obey the equat
3-5
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SUZANNE M. FIELDING PHYSICAL REVIEW E66, 016103 ~2002!
052g~x!P̃~x!12E
x

`

dx8P̃~x8!2E
x

x11

dx8P̃~x8!

1E
0

2

dx8 f ~x8!P̃~x2x8!. ~11!

We note for use below that the functionf (x) ~thus defined! is
discontinuous atx51, and the first derivativeg(1)(x) of g is
likewise discontinuous atx52. In principle, Eq.~11! con-
tains all the information needed to calculateP̃ analytically.
For the counterpart stateP̃age(x) in the undriven chain, the
closed expression@Eq. ~4!# was found @17# as the self-
consistent solution of a simple algebraic relation between
Laplace transformsG and H of P̃age(x) and P̃age(x)Q(2
2x) respectively. The corresponding transform of Eq.~11!
for the driven case is a complicated differential relation b
tweenG, H, G(1), andH (1), and we have been unable find
self-consistent analytic solution. However our numerical
sults~see Fig. 4! demonstrate thatP̃(x) is ~as expected! very
similar to its undriven counterpartP̃age(x): both have a unit
Heaviside discontinuity atx51 and show similar decay fo
x.1. Although the discontinuity in the first derivativ
P̃age

(1)(x) at x52 ~strongly apparent in the dashed curve
Fig. 4! is less noticeable in the solid curve for the driv
stateP̃, it is revealed by numerical differentiation in the ins
of Fig. 4.

It was shown in Ref.@17# that the ageing scaling distribu
tion P̃age has a finite discontinuity in itskth derivative atx
5k11 for all integerk>0. We have already seen nume
cally that the driven scaling distribution shares the disco
nuities fork50,1. We shall now outline an analytical arg
ment that can be used to show that in fact the driv
distribution sharesall of these discontinuities. We confin
ourselves tok>1 since our analysis has already captured
discontinuity in P̃ itself at x51. Differentiating Eq.~11!
once we get

FIG. 4. Scaling distributionP̃(x) for the driven chain~solid

line! and P̃age(x) for the coarsening chain~dashed line!. Inset: de-

rivative dP̃/dx for the driven distribution, showing a slight discon
tinuity ~too small to be discernible in the undifferentiated data of
main figure! at x52.
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2g~x!P̃(1)~x!5g(1)~x!P̃~x!1 P̃~x!1 P̃~11x!

2E
0

2

dx8 f ~x8!P̃(1)~x2x8!. ~12!

On the right-hand side~RHS! of this expression,g(1)(x) is
discontinuous atx52 ~as noted above!, while the integral
over the infinite discontinuityd(x2x821) of the differential
P̃(1)(x2x8) in the last term’s integrand givesQ(32x) f (x
21), which is discontinuous atx52. All other terms on the
RHS are continuous for allx.1. HenceP(1)(x) has a finite
discontinuity atx52. By performing successive differentia
tions, we can extend this argument to arbitrarily highk:
P̃(k)(x) has a finite discontinuity atx5k11 for all k>0.

Our central result can therefore be summarized as
lows. We have shown that a steadily driven chain approac
a scaling state in the limit of smallġ. We have shown tha
this scaling state is strikingly analogous to the counterp
scaling state of a coarsening chain of agetw51/ġ. In par-
ticular, both states have a unit Heaviside discontinuity ax

51, and~more generally! a finite discontinuity inP̃(k)(x) at
x5k11.

Despite the striking qualitative similarities in the distrib
tions P̃(x) and P̃age(x), there are obvious quantitative dis
crepancies. This is not inconsistent with the phenomenol
of other glassy models: the ageing state of Bouchaud’s
model @8#, for example, is analogous but not identical to
steadily driven counterpart@10#. It is nonetheless instructive
to consider the origin of the discrepancies. An obvious c
didate is our introduction in the driven model of the21 spin
state. However, in steady state the population of such spin
small. Indeed, we have checked that domain distributi
produced by driven simulations without the21 state agree
with those that include the21 state to withinO(e).

The discrepancies must therefore be of dynamical orig
During coarsening, the only process is domain coalesce
Therefore, information can only propagate up the distrib
tion ~to larger d). In this way the scaling limitP̃age(x) is
completely determined byP(x8) for x8,x, as seen in Eq.
~3!. In contrast, in the driven chainP̃(x) is connected to all
x8→`, since driven domain intersection acts on domains
all lengths; see Eq.~11!. Furthermore, in the ageing chain th
domain lengths set the dynamical rates only via the coars
ing time scalese2n. In contrast, the driving dynamics ar
further sensitive to domain length through the additional f
ture that a longer domain is more likely to be intersected

The most apparent difference betweenP̃age(x) and P̃(x)
is the much smaller discontinuity inP̃(1)(x) at x52. This
can be explained as follows. The discontinuity inP̃(1)(x)
arises from an interplay between the discontinuity ing(1)(x)
at x52 and in f (x) at x51 @recall Eq. ~12!#. Physically,
g(x) is the rate at which domains of scaling lengthx are
destroyed. This is discontinuous because driven intersec
of a domain of scaled lengthx,2 can produce two active
domains~scaling length,1), whereas only one can be a
tive for x.2. Similarly, the discontinuous part off (x8) re-

e
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sults from the production of domains of lengthx via aided
coalescence~process d above! which can only occur forx
,2. These two effects are of comparable~not identical!
magnitude but opposite sign resulting in only a small disc
tinuity in P̃(1)(x). In contrast, the discontinuity inP̃age

(1)(x)
arises from a single process, the origin of which can be s
from Eq. ~3!. The second term on the RHS describes
production of domains of lengthx via coalescence of an ac
tive domain of lengthx8 with a right neighbor of lengthx
2x8. However if x2x8 is itself active, the right neighbo
can relax before thex8 domain, resulting in a domain o
length.x. The rate of producing domains of lengthx is thus
reduced, as encoded in third term on the RHS. The cuto
the active distribution atx52 means that the derivative o
this term is discontinuous atx54. When transferred to the
next coarsening stage@encoded in the left-hand side of th
equation#, this discontinuity appears inP̃age

(1)(2). Thehigher
convolutions not shown in Eq.~3! are smooth enough not t
affect this argument.

We finally return to justify our two assumptions: first, th
the population of21 spins is negligible in the steady stat
As noted above, we have already numerically observed
population to beO(e) ~small!; we are now in a position to
show this theoretically, as follows. Over a time scale&1/ġ,
the only mechanism in which21 spins can be created in
volves propagation of the facilitating state (21 or 1!, via
constrained thermal activation, to within a distanced,dc to
the right of one of the existing facilitating spins. Denoting
tc(d) the time scale on which domains of lengthd coarsen,
the time scale upon which a21 spin is created at a distanc
d from an existing facilitator istc(d)/e. Once created, such
spin will relax back to the 0 state on a time scaletc(d).
Hence in the steady state, the population of21 states must
be O(e), which is indeed small in the limit considered her

Our second assumption was that of ‘‘independent in
vals.’’ This was used in Ref.@17# for the coarsening proces
of the undriven chain, and in that case is provably exact.
have not been able to prove its strict validity for th
driven case. However, our simulation results show t
the relevant correlation functionC5( j 50

n (dj2^d&)(dj 11

2^d&)/( j 50
n (dj2^d&)2 ~in which dj is the length ofj th do-

main from the left-hand end of the chain, andn is the total
number of domains! is not greater than 1023 in any of the
steady states considered; the assumption, therefore, is l
to be reasonable. Note that our numerical observation
nonzero correlation function could still be consistent with t
independent interval approximation being exact in the lim
e→0 at fixed n. Indeed, we have observed that, ase is
tracked downwards, the numerical value of the correlat
function gets smaller.
er
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VI. SUMMARY AND OUTLOOK

We have incorporated driving dynamics into the kine
cally constrained spin chain of Ref.@16#, and presented
simulation results showing that the coarsening dynamics
the undriven chain~as solved in Ref.@17#! are interrupted by
steady driving. Consistent with the broader glassy literat
@2–7,9,10# we have found that steady driving stabilizes t
chain at an apparent age set by the inverse driving rate.
have presented a theory for this steady state, demonstrat
to be in excellent agreement with our simulation results.

have shown that a scaling state is approached at smallġ, and
that this scaling state has very similar properties to its co
terpart scaling state reached at long times in the coarse
chain.

We now outlook some possible directions for future wo
Above, we focused on a chain that is steadily driven a

constant rateġ. We also noted the loose analogy of th
driving scenario to that of constant shear rate in a rheolog
system. In the spirit of this rheological connection, we c
identify possible analogues of two other standard rheolog
tests—step strain and step stress—which it would be in
esting to investigate further. For a step strain of sizeg0 we
promote, at the timetw of strain application, a fractiong0 of
21 spins~chosen randomly! according tosi :21→0 and of
0 spins~again chosen randomly! si :0→1. We do thiswith-
out regard to the kinetic constraint. For all other times the
system merely relaxes under its undriven constrained dyn
ics. ~Note that the step attw is just the ‘‘impulsive limit’’ of

the above steady shear case:ġdt5g0, with dt→0 and ġ
→`.! For a step stress of sizes0, we apply the same dy
namics just defined for the step strain up until the timetw

1 .
~We can merely renameg0 by s0 because the ‘‘spring con
stant’’ k[1.! For t.tw we implement the ‘‘constant’’ strain-
rate dynamics defined above, but withġ continuously ad-
justed to ensure thats0 remains~on average! a constant.

As noted in the introduction, it would also be interestin
to study FDT in the driven steady state~at constantġ) to see
if any effective temperature emerges, and~if so! whether it
coincides with any effective FDT temperature of a coars
ing chain of agetw51/ġ. This is the subject of a forthcoming
publication@27#.
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